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ABSTRACT
Cryptoassets such as cryptocurrencies and tokens are increasingly
traded on decentralized exchanges. The advantage for users is that
the funds are not in custody of a centralized external entity. How-
ever, these exchanges are prone to manipulative behavior. In this
paper, we illustrate how wash trading activity can be identified
on two of the first popular limit order book-based decentralized
exchanges on the Ethereum blockchain, IDEX and EtherDelta. We
identify a lower bound of accounts and trading structures that meet
the legal definitions of wash trading, discovering that they are re-
sponsible for a wash trading volume in equivalent of 159 million
U.S. Dollars. While self-trades and two-account structures are pre-
dominant, complex forms also occur. We quantify these activities,
finding that on both exchanges, more than 30% of all traded tokens
have been subject to wash trading activity. On EtherDelta, 10% of
the tokens have almost exclusively been wash traded. All data is
made available for future research. Our findings underpin the need
for countermeasures that are applicable in decentralized systems.
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Computer forensics.
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1 INTRODUCTION
Despite several cycles of boom and bust, cryptocurrencies and other
virtual assets in the form of blockchain-based tokens appear to
remain popular. Founders of blockchain startups frequently choose
to issue a token, e.g. to represent shares or voting rights in the
startup. blockchain-based token systems became popular in 2017,
and have evolved in recent years. In fact, some new developments
even see heightened attention: A new group of services under
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the umbrella term Decentralized Finance (DeFi) are establishing
themselves as a key use case for distributed ledger technologies
(DLTs) in general. The aim is to design financial products, that are
partly based on services from the traditional financial world yet
completely new in other areas. The appeal lies in offering these
financial products in a decentralized way, excluding middlemen as
far as possible.

While the field now encompasses a multitude of services such as
lending protocols, derivatives and insurances, so-called decentral-
ized exchanges (DEX) were among the early drivers of the ecosys-
tem. They allow for the exchange of virtual assets without having to
rely on externally-controlled services such as centralized exchanges,
many of which have been the victims of theft in recent years [22].
As the number of different DeFi services increases, so does the com-
plexity and vulnerability of these systems, as demonstrated by the
recent example of large so-called flash loan-based trades. Within a
single transaction, a large cryptocurrency loan is taken and repaid
while executing an attack vector against multiple services [24]. It is
therefore necessary to gain a better understanding of how services
in the DeFi ecosystem are being used. This can help to uncover
manipulative behavior, so that these systems can be improved in
the future.

In this work, we therefore focus on two of the first and most
popular decentralized exchanges on the Ethereum platform, where
we study the trading activity between user accounts. In particu-
lar, we identify a lower bound of suspicious trading behavior that
closely follows the definition of wash trading, a type of market
manipulation that is well known in the context of traditional finan-
cial instruments, and illegal in most countries. To perform wash
trading, several users can collude and trade only amongst them-
selves. Thereby, they give the impression that they are buying and
selling, but in reality they are not changing their own positions
or taking any real market risk. These activities inevitably lead to
increased (fake) trading volume, a metric that is observed among
many traders and may influence a trader’s sentiment about a given
virtual asset. The same effect can also be achieved with a single
user operating multiple accounts. Since account creation on the
Ethereum blockchain is virtually cost-free, and does not require
providing identity information, this scenario is much more likely.

Although wash trading in cryptocurrencies has been studied
on centralized exchanges [13], where trading happens off-chain,
previous analysis is limited to exchange-reported trades, for which
account level information is unavailable. In addition, it is very likely
that these reported trades have never actually taken place, and the
exchange operators are the main suspects. This is in contrast to
trades on decentralized exchanges, where each trade carries a cost
and is stored on the ledger along with the involved accounts.
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To the best of our knowledge, no systematic analysis of wash trading
activity exists for decentralized exchanges.
Contributions in this paper:

• We present the first systematic analysis of wash trading be-
havior on the decentralized exchanges IDEX and Etherdelta,
demonstrating the issue and the need for countermeasures.
• We empirically identify wash trade accounts and trade struc-
tures and discover that the majority of structures consist of
one or two accounts, while complex ones also exist.
• We quantify a lower bound of the financial extent of the
activities, finding that on both exchanges, a total of 159
million U.S. Dollars has been wash traded, that at least 30%
of all tokens on both exchanges experienced wash trading
activity, and that on EtherDelta, 10% of the traded tokens
have almost exclusively been wash traded.

2 BACKGROUND
With the inception of Bitcoin [23], digital currencies have gained
in popularity. Users can manage their currency within an account,
also called a wallet, which consists of a public and private key
pair. To send a transaction, users have to specify a target account
address, which is derived from a public key, and sign it with their
own private key. Today, users are not limited to transferring the
native cryptocurrency of a particular blockchain. The emergence
of blockchains featuring smart contracts has paved the way for the
issuance of a wide variety of assets that are typically represented in
the form of tokens. Ethereum [31] is a prime example for this, where
thousands of such tokens have been issued. It is also a platform
that has seen widespread use of decentralized exchanges, where
tokens can be traded against Ether (ETH) and other tokens, thus
offering an alternative to external, centralized exchanges.

2.1 Centralized and Decentralized Exchanges
A centralized exchange (CEX), sometimes also called a custodial
exchange, keeps a user’s assets in their collective exchange wallets.
These are high-value targets of attacks, as evidenced by numerous
cryptocurrency exchange hacks. In order to trade on a CEX, users
send their assets to an exchange-owned deposit wallet specifically
created for a particular user. This wallet then forwards the assets
to their main wallet and registers the received funds to be used for
trading. All trading happens outside of the blockchain, until a user
wants to withdraw their assets, at which point the exchange sends
them back to the user wallet.

In contrast, a decentralized exchange (DEX) is typically imple-
mented as a smart contract, which can allow for the non-custodial
trading of cryptoassets. Users send their assets to the smart con-
tract, can interact with it for trading, and withdraw again. In the
past years, multiple types of DEX have been proposed, some of
which are actively used.

2.2 Types of Decentralized Exchanges
The two main DEX variants are based on limit order books (LOB) or
automated market makers (AMM). The following is a brief overview.
For more details, we refer the reader to Lin et al. [21]

2.2.1 Limit Order Book-based DEX. In a LOB-based DEX, users
trade with each other via an order book. As makers, they submit
orders to the order book as an offer to buy or sell an asset at a
certain price and/or volume. When filling such an order, either
explicitly or automatically, the users act as takers. The order books
can be managed on-chain or off-chain, but the actual settlement of
the trades typically happens on-chain. Two popular examples of
such LOB-based DEX are EtherDelta and IDEX, that both operate
on the Ethereum blockchain. They both manage their order books
off-chain, which requires an external service that users interact
with. Nevertheless, they can withdraw their assets at any time by in-
teracting with the smart contract directly. In the case of EtherDelta,
users send trade instructions to the smart contract itself, whereas
IDEX uses a separate account to trigger trade instructions at the
smart contract. They both charge trading fees, which amount to
0.3% of the traded amounts, where IDEX splits the fees between
maker and taker, and EtherDelta charges only the taker. In addition,
the transaction fees need to be covered by the traders, effectively
increasing the total trading fees to more than 0.3%.

2.2.2 Automated Market Maker DEX. AMM DEX such as Uniswap
and Kyber differ significantly from an LOB DEX. Users do not
trade peer-to-peer but against a liquidity pool or reserve. These
are implemented using smart contracts. On Uniswap, each reserve
or contract holds funds of a token and ETH. Uniswap features
a pricing mechanism called a "constant product market maker"
formula. Prices are determined by the share of token and ETH
funds in a reserve in relation to an invariant of total liquidity, which
remains stable during trading. Liquidity providers fill the pools and
must always contribute equal amounts of a token and ETH [2].

Although AMM DEX have recently gained in popularity, we
focus on LOB-based DEX in this work, as they have a longer history
of over 3 years.

2.3 Defining Wash Trades
Wash trading has been prohibited in the U.S. by the Commodity
Exchange Act in 1936 [10] [1]. The Commodity Futures Trading
Commission (CFTC) defines it as "Entering into, or purporting to
enter into, transactions to give the appearance that purchases and
sales have been made, without incurring market risk or changing
the trader’s market position" [9]. It is also referred to as Round Trip
Trading. Actors colluding in or arranging transactions, such that
they do not incur market risk, are thereby deemed wash trades.
The definition also indicates that actors executing a series of trans-
actions among themselves, after which they end up at the same
market position that they had initially, can be considered wash
trades. In 2013, the CME Group has issued a Market Regulation
Advisory Notice. It provides some guidance as to what may con-
stitute a wash trade. It notes two important criteria: a) the intent
of actors to execute fictitious trades that are not subject to market
risk, and b) "a wash result - meaning the purchase and sale of the
same instrument at the same price, or a similar price, for accounts
with the same beneficial ownership or for accounts with common
beneficial ownership" [18, p. 5].
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3 RELATEDWORK
Academic studies that are related to our work mostly concern wash
trading in traditional financial markets and other types of market
manipulation in cryptocurrencies. While these will be addressed in
detail in the following, other related works concern the graph-based
study of token transfer networks [12, 26, 29] and the identification
of users with multiple accounts in Ethereum [27].

3.1 Cryptoasset Price Manipulation
The increasing attention for cryptocurrencies has comewith a range
of manipulative activities. Several papers have studied the phenom-
enon of cryptocurrency pump and dump schemes [19, 20, 28, 32]
and manipulation of Bitcoin prices [16, 17], both on centralized
exchanges. Suspicious trader networks and manipulative transac-
tion patterns have been identified on the Mt. Gox exchange [11].
Much less work exists on manipulation on DEX, though substantial
evidence for front running attacks was found [14].

3.2 Wash Trade Detection
Before academic work has focused on the detection of wash trad-
ing, a related phenomenon called collusive cliques has been studied
using graph clustering and nearest neighbor algorithms [3]. Other
methods that have been used include spectral clustering [15], Hid-
den Markov Models [6] and correlation statistics on aggregated
order volume time series [30].

Cao et al. were among the first to explicitly study the detection
of wash trades in financial markets [7]. They point out that previ-
ous work had focused on collusive and correlated trading behavior
rather than the more specific pattern of wash trading. Their detec-
tion algorithm identifies subsets of a given set of trades that lead
to no position change of all involved traders. From a topological
perspective, these trades form a closed cycle. To identify these, the
algorithm checks the power set of a set of trades, resulting in a
runtime of O(2𝑛). Cao et al. extended their work in 2016 for order
book data instead of trade data [8].

3.3 Cryptocurrency Wash Trading
Wash trading in cryptocurrencies is receiving increasing attention.
Websites have published articles on a startup faking volume for
exchanges [5] and exchanges have promised to come clean on wash
trading [4]. Recently, the first academic study on wash trading on
CEX has been proposed by Cong et al. [13]. The authors study ma-
jor cryptocurrencies, finding that 26 unregulated exchanges fake up
to 70% of their total trading volume. They analyze first-significant-
digit distributions of trade sizes, and size clustering and power laws
of trade size distributions. In Section 4.3, we briefly show that trade
size distributions are of little use for detecting wash trading on
DEX. Cong et al., as well as some previous technical reports, have
not analyzed wash trading on an account-level basis, but rather
used statistical indicators to find evidence for fake volume. Also, it
is likely that such fake volumes or wash trades are produced by the
exchanges themselves, to boost their trading volumes and thereby
rankings. However, individual traders can also perform wash trad-
ing, but previous research on CEX was unable to perform such
analysis due to a lack of data. To this end, we analyze wash trading
on DEX on an account-level basis, following legal definitions.

4 DATASETS AND PREPARATION
In this section, we detail what data we have collected and how it was
preprocessed. We also provide information on how we model token
trade graphs, and provide high level insights about the datasets.

We collected all Ethereum blocks, transactions and events related
to the EtherDelta and IDEX exchanges, corresponding to a time
frame between 02/09/2017 and 05/04/2020. Given the transactions
and events, along with the smart contract addresses of IDEX and
EtherDelta, information about the executed trades can be obtained.

To extract trades that have been executed on IDEX, we have
parsed all successful transactions targeted at the IDEX smart con-
tract1, which call the function trade, identified by the shortened
Keccack256 hash 0xef343588. The parameters of this function call
include information on the participating accounts, which token has
been bought and sold, traded amounts and fees.

Similarly, EtherDelta trades can be extracted by parsing the
trade events triggered by the EtherDelta smart contract2. Every
successful EtherDelta trade emits a Trade event, identified by the
event topic Keccack256 hash starting with 0x6effdda7, which is
triggered by the smart contract when a corresponding transaction
has been executed against it. The event also contains information
about the participating accounts, exchanged tokens and amounts.

The trade timestamps are obtained from the block the transaction
or event was found in. To assess the trade volume in U.S. Dollars,
we obtained daily exchange rates of Ether to Dollar from Etherscan.
All data is available on Zenodo3, and the code is on GitHub.4

4.1 Data Preprocessing
We have preprocessed the data as follows: As the internal trade
amount representation is based on very large integer amounts
for precision, we first converted them to floating point values for
easier handling. Secondly, the prices of the involved assets are
computed based on exchanged amounts, and U.S. Dollar values
are joined. We then removed trades containing missing data and
possibly unsuccessful IDEX transactions as indicated by the status
field which has been introduced with the Ethereum Byzantium
fork. We also removed trades in which two tokens were exchanged,
leaving trades between Ether and some token. We do so in order to
be able to study wash trading of individual tokens traded against
a common base currency. These steps remove only a very small
fraction of the trades (IDEX: 3, 612 trades, EtherDelta: 3, 095 trades).
An overview of the resulting trade datasets is depicted in Table 1.

Table 1: Overview of IDEX and EtherDelta datasets.

IDEX EtherDelta
Start date (UTC) 09/27/2017 10:57pm 02/09/2017 11:56pm
End date (UTC) 05/04/2020 1:22pm 05/04/2020 1:22pm
Number of trades 5, 340, 537 3, 573, 512
Number of traders 249, 911 323, 598
Number of tokens 1, 206 6, 551

1IDEX smart contract address: 0x2a0c0dbecc7e4d658f48e01e3fa353f44050c208
2EtherDelta smart contract address: 0x8d12a197cb00d4747a1fe03395095ce2a5cc6819
3https://zenodo.org/record/4540223
4https://github.com/friedhelmvictor/lob-dex-wash-trading-paper
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(a) A Loop (b) A Cycle

(c) A Cycle With Parallel Edges (d) A Cycle with Sub-Cycles

Figure 1: Four examples of directed token trademultigraphs.
Red edges would conform to wash trading activity.

4.2 Modeling Token Trade Graphs
Each trade in the data contains two participating accounts, and
a token amount that was exchanged for a certain Ether amount.
Therefore, we can model all trades of a certain type of token as a
token trade graph. For the remaining chapters, we define a token
trade graph𝐺 (𝑉 , 𝐸) to be a directed multigraph, where 𝑉 is the set
of trading account addresses, and 𝐸 is the set of trades. The direction
of each edge is given by the token flow — from the token seller to
the token buyer. Note that this means each trade is represented as
only one directed edge, even though both vertices send and receive
assets. Finally, each edge also has a weight, which corresponds to
the traded token volume.

This setup allows us to observe cycles with matching volumes
in a token trade graphs, which is fundamental to the idea of wash
trading. To illustrate, Figure 1 showcases a few potential scenarios
of wash trading activity within a token trade graph. Each vertex
is one trading account, trades belonging to the wash trade set are
colored red, and vertices belonging to the set of wash trading actors
are colored in a strong yellow. The rest of the graph is slightly faded.
Figure 1a shows a loop, i.e. a self-trade. This means a single account
executed a trade with itself, which can also be observed in our data.
In Figure 1b, three actors trade the same amount in a cycle, slightly
modified in Figure 1c, where the trades between trader 4 and 2 are
split into two trades. Finally, Figure 1d shows a more complicated
scenario. There is a cycle along vertices 1 to 5, but also three partly
overlapping sub-cycles {1, 5, 4, 2}, {2, 5, 4} and {2, 5, 4, 3}. Summing
the trades, each trader buys and sells exactly 120 tokens, which
leads to no change in their market positions. Also, note that not
all trades even among the wash trading actors belong to the wash
result, e.g. 30 token from trader 5 to 4. Indeed, actors may try to
hide their illegitimate activities among other, legitimate trades.

4.3 High Level Insights
We briefly explore the datasets to illustrate their structure. Particu-
larly interesting is the relationship between the number of trade

Figure 2: Each cross represents one trader account, posi-
tioned by number of trade partners and number of trades
particpated in. Surprisingly, some traders perform a large
number of trades with only a few other accounts.

partners and the number of executed trades, which is visualized
in Figure 2. Each cross is one trading account, positioned by the
number of trades it was part of, and how many other trading ac-
counts it has interacted with. On the left side of each plot, there
exist accounts that have performed many trades with only a few
other accounts. The ratio of number of trades per trade partner
over all trader accounts has its median at just 1, and is only 3.25 at
the 99th percentile. This makes sense intuitively, as traders usually
do not know who they are trading with when issuing a trade order.
The DEX web interfaces that list current buy and sell orders do not
indicate account information. Therefore, accounts that have vastly
more trades than trade partners might be suspicious.

Secondly, we can explore traded Ether amounts. Related works
use the indicator of an unnatural trade size distribution (such as a
uniform distribution) as a signal for the existence of wash trading
on centralized exchanges. Figure 3 shows the trade size distribution
for both DEX analyzed in this paper. Higher amounts are traded
less frequently, and there exist local peaks at round numbers such
as 5 Ether. We conclude that these distributions appear to conform
to natural trading behavior, and are likely unsuitable as an indicator
for wash trading on DEX.

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

10

1,000

100,000

Ether amount, bins of size 0.1
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IDEX EtherDelta

Figure 3: Trade size distributions in Ether amounts. Higher
amounts are traded less frequently, and local peaks exist at
round numbers, indicating natural trading behavior.
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Input: Token trade graph                     Simplify, find SCCs              Decrease weights, find SCCs      Decrease weights find, SCCs         Result: Sets of SCC vertices with occurrence count

Figure 4: After graph simplification, SCCs are iteratively counted, and weights decreased until no edges remain (Algorithm 1).

5 WASH TRADE DETECTION
In order to detect wash trades, we follow legal definitions and
criteria of wash trading by the CFTC and CME. Our aim is therefore
to identify sets of trades between collusive trading accounts that
lead to no change in the individual position of each participating
trader. In other words, for each account within a set of trading
accounts, the total amount of purchased assets equals the total
amount of sold assets, such that the involved traders essentially hold
the same position they had initially. In this section, we present a
volume matching algorithm that identifies such trades, which needs
to be suppliedwith a set of trades and a timewindowparameter. Due
to the very high number of trades in our datasets, it is not feasible
to check the power set of the trade sets as proposed with previous
wash trade detection methods, as this results in exponential time
complexity. For this reason, we follow a two-step process:

(1) Account Candidate Set Generation: We determine candidate
sets of potentially collusive traders via an iterative counting
of strongly connected components (SCCs) in each token
trade graph.

(2) Trade Volume Matching: For time windows of trades within
frequently occurring SCCs, we determine if there exists a
trade subset that leads to no position change for each trader.

5.1 Candidate Set Generation with SCCs
We saw in Figure 1, that wash trade scenarios contain at least one
cycle. However, an approach of detecting all cycles would not be
able to capture the scenario in Figure 1d, where the wash trading
structure consists of a cycle with sub-cycles. Therefore, we propose
to use the concept of strongly connected components to identify
maximal subsets of vertices that are connected via cycles.

A directed graph 𝐺 is strongly connected if there exists a di-
rected path from every vertex 𝑣 to every other vertex 𝑢 in 𝑉 . If 𝐺
as a whole is not strongly connected, it can consist of strongly con-
nected components (SCCs). An SCC is defined as a maximal subset
of vertices 𝐶 ⊆ 𝑉 such that there exists a directed path from every
vertex 𝑢 to 𝑣 and from 𝑣 to 𝑢, where 𝑢, 𝑣 ∈ 𝐶 [25]. An SCC contains
one or multiple cycles, which can be thought of as round trip trades.
As such cycles can appear coincidentally, we are particularly inter-
ested in traders that are repeatedly part of such SCCs. Therefore,
for each token trade graph, we perform an iterative counting of
SCCs as illustrated in Algorithm 1 and Figure 4.

First, a directed token trade multigraph is simplified, turning the
number of multi edges between two vertices into an edge weight.
We then perform multiple iterations of determining all SCCs in the
graph, counting how often they have been seen over the iterations.

Algorithm 1: Iterative SCC Counting
Data: Directed token trade multigraph 𝐺 (𝑉 , 𝐸)
Result:Mapping𝑀 of sets of vertices 𝑉 to counts

1 𝐺 ← simplify(G, edgeweight = edge count)
2 𝑀 ← Create empty key value map, default value 0
3 while |𝐸 | > 0 do
4 𝑆𝐶𝐶𝐿𝑖𝑠𝑡 ← computeSCCs(G)
5 foreach 𝑆𝐶𝐶 ∈ 𝑆𝐶𝐶𝐿𝑖𝑠𝑡 do
6 𝑆𝐶𝐶𝑉 ← getVertexSet(𝑆𝐶𝐶)
7 𝑀.𝑠𝑒𝑡 (𝑆𝐶𝐶𝑉 ) ← 𝑀.𝑔𝑒𝑡 (𝑆𝐶𝐶𝑉 ) + 1
8 end
9 foreach 𝑒 ∈ 𝐸 do
10 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑒) ← 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑒) − 1
11 if 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑒) = 0 then
12 𝐸 ← 𝐸 \ {𝑒}
13 end
14 end
15 end
16 return (M)

After each iteration, we decrease all edge weights by 1, and remove
edges that would end up with an edge weight of 0. When no edges
remain, the process is complete. The result are sets of vertices of
SCCs with counts indicating how often they have occurred.

After performing Algorithm 1 on all token trade graphs of each
DEX, we can visualize the complementary cumulative distribution
function (CCDF) of SCC counts in Figure 5. We select those SCCs
as our candidate set which occur at least 100 times. On IDEX, this
corresponds to the top 3%, on EtherDelta the top 1%.

Suspicously frequent SCCs
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Figure 5: CCDF of identified SCCs. A small fraction of SCCs
appear at least 100 times, indicating at least 100 round trip
trades. We choose these as our candidate set.
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5.2 Volume Matching
After identifying candidate sets of SCCs consisting of trading ac-
counts that repeatedly trade in circular ways, we look at the trades
between these accounts, for individual tokens. The goal is to find
subsets of trades with matching volumes that lead to no overall posi-
tion change for the individual accounts. In this section, we therefore
formalize position changes based on multiple trades, adapted from
Cao et al. [7, 8] for the context of crypto tokens. Finally, we describe
our volume matching algorithm of linear time complexity.

5.2.1 Formalizing trader position changes for wash trade detection.
In order to detect trades that lead to no individual position change,
we need to sum up trades in such a way that the traded volumes are
summed up per trading account involved in these transactions. A
volume can be bought or sold, so the position an individual account
holds can increase or decrease.

We can formalize a trade 𝑇 as in Equation (1), where trader 𝑎 𝑗
sells volume 𝑉 to trader 𝑎𝑖 . We denote trader positions by their
account addresses 𝑎, since one real-world trader may control several
account addresses. The signs indicate the selling or buying position.
Since the algorithm that is based on this formalization is run for
sets of trades within a particular token, we do not need to indicate
the token here.

𝑇 = (+𝑎𝑖 ,−𝑎 𝑗 )𝑉 , (1)

Two (or more) trades are summed up and lead to signed trader
positions as in Equation (2). Buyer and seller of each trade are listed
separately, and the sign for indicating selling and buying positions
(±) is transferred to the volume𝑉 . The volumes sold and bought by
each trader are summed up, leading to individual positions 𝑝𝑖 . The
result is a set of accounts 𝑎𝑖 that each hold a relative position 𝑝𝑖 ,
which can be positive or negative. We refer to the overall position
of individual traders involved in a set of trades 𝑇𝑘 as 𝑃 .

2∑︁
𝑘=1

𝑇𝑘 = 𝑇1 +𝑇2

= (+𝑎𝑖 ,−𝑎 𝑗 )𝑉1 + (+𝑎 𝑗 ,−𝑎𝑖 )𝑉2

= {[+𝑎𝑖 ]𝑉1 , [−𝑎𝑖 ]𝑉2 , [−𝑎 𝑗 ]𝑉1 , [+𝑎 𝑗 ]𝑉2 }
= {[𝑎𝑖 ]+𝑉1−𝑉2 , [𝑎 𝑗 ]−𝑉1+𝑉2 }
= {[𝑎𝑖 ]𝑝𝑖 , [𝑎 𝑗 ]𝑝 𝑗

}
= 𝑃

(2)

We formalize the detection of wash trades with Equation (3). For a
given trade set 𝑆𝑇 the goal is to find a subset 𝑆𝑊 ⊆ 𝑆𝑇 such that:∑︁

𝑆𝑊 =
∑︁

𝑇𝑘 ∈ 𝑆𝑊

=
∑︁
(+𝑎𝑖 ,−𝑎 𝑗 )𝑉𝑘

= {[𝑎𝑖 ]𝑝𝑖 , ..., [𝑎 𝑗 ]𝑝 𝑗
}

= {[𝑎𝑖 ]0±𝑣, ..., [𝑎 𝑗 ]0±𝑣}

(3)

In other words, when summing up all trades in 𝑆𝑊 , all traders 𝑎𝑖
involved in 𝑆𝑊 must hold a relative position of 𝑝𝑖 = 0, allowing
for a small deviation 𝑣 . We define this deviation as a percentage (or
margin)𝑚 of the mean trading volume of 𝑆𝑊 , e.g.𝑚 = 0.01:

𝑣 =𝑚 ·
∑
𝑇𝑘 ∈𝑆𝑊 𝑉𝑘

|𝑆𝑊 |
(4)

We need to choose such a margin for two reasons: In order to
make a wash trade less obvious, traders might not buy and sell
exactly the same volumes when wash trading. Secondly, each trade
incurs a cost, which may decrease a trader’s capital with every
trade and therefore also be reflected in slightly decreasing wash
trade volumes. We set this margin to be 1%.

5.2.2 Wash Trade Detection Algorithm. Based on the definitions,
we can now determine whether a given set of trades yields trader
positions that are close to 0. The next challenge is to test various
trade sets. Given a set of trades, the algorithm by Cao et al. [8] tests
all possible subsets (i.e. the power set), trying to find configurations
such that the signed sums of each trader equal zero. However, this
leads to an exponential time complexity in O(2𝑛), in dependence
on the size of the given trade set 𝑛. In Section 5.1, we have proposed
to generate SCC candidate sets per token trade graph in order to
reduce the trade sets to be analyzed. However, these SCCs can still
execute thousands of trades in a particular token, so an exponen-
tial runtime is not feasible. We therefore propose to further split
these trades using a time window 𝑡 . Also, instead of checking all
2𝑛 subsets of a window trade set, we propose to check 𝑛 subsets,
iteratively removing the last trade in the set.

Algorithm 2 illustrates this concept for a set of trades 𝑆𝑇 . The
signed trader positions are calculated by summing up all given
trades (Line 3). The algorithm then iterates through the trades. In
each step, it checks whether each trader has a current position 𝑝𝑖
of at most a margin𝑚 of the mean trade size. If the current trade
set 𝑆𝑊 meets this condition, a wash trade set is found. If not, the
last trade is repeatedly removed from the set (Lines 9-10).

Algorithm 2: Trade Volume Matching
Data: Set of trades 𝑆𝑇 = {(+𝑎𝑖 ,−𝑎 𝑗 )𝑉1 , ..., (+𝑎𝑥 ,−𝑎𝑦)𝑉𝑛 },

margin𝑚
Result: Set of trades that constitute a wash result 𝑆𝑊

1 𝑆𝑊 ← 𝑆𝑇 // assume all trades are in wash result

2 𝑛 ← |𝑆𝑊 |
3 𝑃 ← ∑

𝑆𝑊 = {[𝑎𝑖 ]𝑝𝑖 , ..., [𝑎 𝑗 ]𝑝 𝑗
} // compute positions

according to Equation (2)

4 while n > 1 do

5 𝑣𝑚𝑒𝑎𝑛 ←
∑
𝑇𝑘 ∈𝑆𝑊 𝑉𝑘

|𝑆𝑊 | // compute mean trade size

// if all trader positions are at most a

margin of the mean trade size:

6 if (𝑝𝑖 ≤ 𝑚 · 𝑣𝑚𝑒𝑎𝑛)∀[𝑎𝑖 ]𝑝𝑖 ∈ 𝑃 then
7 return 𝑆𝑊

8 end
9 𝑛 ← 𝑛 − 1

10 𝑆𝑊 ← 𝑆𝑊 [1, ..., 𝑛] // remove last trade

11 𝑃 ← ∑
𝑆𝑊 = {[𝑎𝑖 ]𝑝𝑖 , ..., [𝑎 𝑗 ]𝑝 𝑗

} // update

positions

12 end
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Figure 6: Identified wash trading structures with counts on both DEX. On EtherDelta (ED), the vast majority of wash trades
are performed as self-trades of single accounts (5,501 instances). On IDEX, these are less frequent and two-account structures
are also popular. More complex structures are rare and almost never appear on EtherDelta. It is noticeable that in almost all
structures short sub-cycles of length 2 exist. Several cases – b), f), j), m), q), w) – are fully connected.

The individual positions are updated (Line 11) and checked again
in the next iteration. Finally, the algorithm terminates after remov-
ing the second to last trade (Line 4), as a wash trade set must contain
at least 2 trades. The complexity of the algorithm is in O(2𝑛).

Wash trading actors may follow different temporal patterns and
trade over different time periods until they reach what is defined as
a wash result. Generally, we assume that such actors trade rather
frequently in small time intervals so as to continuously inflate
trading volumes that suggest an active market. Two matching wash
trades with days in between them are less suitable for this purpose.
However, in order to capture as many scenarios and wash results
as possible, we propose to use three different time window sizes
of one hour, one day and one week. Starting with the smallest
interval, these are applied in three passes. In each pass, Algorithm 2
is applied on trade sets derived per candidate SCC, token and time
window. Trades once labeled as wash trades are not checked again.

6 QUANTIFICATION
In this section, we quantify the wash trading that has been identified
by our detection method. The following list summarizes the final
parameters that form the basis for the remaining quantification of
wash trading activity on IDEX and EtherDelta:

• Threshold for candidate set of SCCs: 100 occurrences across
all traded token types.
• Margin𝑚 at which we define that the trader position basi-
cally did not change: 1% of the mean trade volumes within a
set of analyzed trades.
• Time windows of trades in which we perform volume match-
ing: 1 hour, 1 day and 1 week.

We now study wash trading structures, what proportion of tokens
is affected to what degree, at what point wash trading occurs within
a token’s trading lifecycle, and manipulated volume over time.

6.1 Wash Trading Structures
All trades of the candidate set SCCs were labeled with our volume
matching algorithm. As a result, we can study the structures that
consist of identified wash trades. Figure 6 illustrates the result for
both IDEX and EtherDelta, where the counts indicate how many
variants with different traders have been observed on each DEX.
On EtherDelta, the vast majority of wash trades are performed
as self-trades (a)), where an account is able to trade with itself,
which could easily be prevented. Although also common, they
do not appear to the same extent on IDEX. Second only to the
self-trades, the structure consisting of two accounts (b)) is the next
simplest, and at least on IDEX it is also quite common.More complex
structures consisting of three or more accounts are mainly found
on IDEX. In almost every advanced structure, several short sub-
cycles can be found. In some instances the wash trade subgraphs
are completely connected. The complex structures consisting of
simpler sub-structures may indicate that wash trading is performed
in simple cycles on a low-level, but that actors make an effort to
hide these among multiple trading accounts. Branched structures
with sub-cycles of length greater than three do not occur here.

6.2 Affected Tokens
Wenow examine the extent to which the tokens traded on each DEX
are affected by wash trading. We compute the share of a token’s
total trading volume that can be attributed to wash trading. Based
on this, we show the share of all tokens that exhibit at least a certain
wash trading percentage in Figure 7. On both exchanges, at least
10% of the traded tokens have a wash trading share of at least 20%.
On EtherDelta, almost 10% of the tokens have been entirely wash
traded. On IDEX, this only applies to less than 1% of all traded
tokens. While the figure illustrates the minimum share of wash
trading activity, the total share of tokens that have ever been subject
to at least one set of wash trades, irrespective of their volume, is
31.54% for IDEX, and 42.12% for EtherDelta.
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Figure 7: On both IDEX and EtherDelta, at least 10% of the
traded tokens have a total wash trading share of at least 20%.
On EtherDelta, there is the extreme case that 10% of the to-
kens are entirely wash traded and have no real trading vol-
ume at all. On IDEX, this scenario only holds true for less
than 1% of the tokens.

6.3 Wash Trade Activity in a Token’s Lifespan
To determine in which phase of a token’s trading lifespan wash
trading occurs, we first determine the relative time position of each
wash trading activity in relation to the first and last (legitime) trad-
ing activity in the respective token. We then compute the median
of these wash trading activites per token. Figure 8 shows the results
for both exchanges. It can be seen that wash trading is more fre-
quent at the beginning and at the end. The peaks at the beginning
of the tokens’ lifespans may be attributed to manipulators wanting
to generate trading volume so that real traders become aware of
a new token. The fact that wash trading also occurs frequently at
the end could be due to a token showing only little trading activity
and manipulators wanting to increase the trading activity again.
Since the trading volume of 10% of the tokens traded on EtherDelta
consists almost exclusively of wash trades (see Figure 7), the me-
dian wash trading time in the lifespan of these tokens may be close
to 0.5. This may explain the peak of tokens with increased wash
trading activities in the middle of the lifespan.

6.4 Wash Trade Activity Over Time
We now look at the achieved wash trading volume over time, first
from an absolute perspective and then relative to the rest of the
(legitimate) trading volume. Figure 9 shows the wash trading vol-
ume by month, over a period of about 3 years. IDEX activity started
slightly later than on EtherDelta, reaching its peak in June 2018 with
over $15 million in monthly wash trading volume. On EtherDelta,
activities are focused on the period from mid-2017 to mid-2018,
with more than $12 million in wash trading volume in January 2018.
Activities on EtherDelta and IDEX flatten off sharply frommid-2018
and mid-2019 respectively, so that virtually no wash trading volume
is visible.

Figure 10 shows the relative share of wash trading volume on
a weekly basis. Notably, IDEX exhibits several weeks with over
50% and even close to 100% of the total trading volume being wash
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Figure 8: Distribution of median wash trading activity
within a token’s DEX trading lifespan. Frequently, a token
is wash traded at the beginning of its trading lifespan, and at
the very end. The peak at the center is due to some tokens
that are entirely wash traded, where the median results in
values close to 0.5.

traded at the end of 2017. From 2018 onward, a share of up to 20%
can be observed on both exchanges, which then further declines in
2019 and 2020.

Both graphs show peaks in late 2017 and early 2018. This falls
into a phase in which the public awareness of cryptocurrencies
and tokens was particularly high. At this time, many token prices
reached record highs, only to be followed by a crash in early 2018.
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Figure 9: Absolute wash trading volume per month on both
DEX. Most wash trading on EtherDelta occurred between
mid-2017 andmid-2018. On IDEX, the activities started later
and declined from the beginning of 2019.

6.5 Summary
Finally, we show detailed wash trading statistics for IDEX and
EtherDelta in Table 2. Note that all statistics referring to wash
trades include both self-trades and more complex wash trades. On
EtherDelta, the majority of wash trades are self-trades, whereas on
IDEX, the self-trades only account for a small share. However, the
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Figure 10:Weekly share of wash trade volume on both IDEX
and EtherDelta. At the end of 2017, themajority of trades on
IDEX were wash trades.

total wash trading volume exceeds $75 million on both exchanges,
with a total of $159 million. On IDEX, illegitimate accounts traded
an equivalent of over $12 million with themselves, on EtherDelta
almost $65 million. The fraction of all trades that are wash trades is
about 4% on IDEX and 1.3% on EtherDelta. On both exchanges, more
than 30% of the tokens that are tradable have been subject to wash
trading activity. On EtherDelta, the wash trades were executed by
over 5,000 different accounts, leading to an average of about 13
wash trades per manipulative trader account. On the other hand,
only 659 trader accounts were responsible for over 200,000 wash
trades on IDEX. Finally, considering that both DEX charge trading
fees of 0.3%, the total fees paid to the exchanges to perform wash
trading, lead to an equivalent of 478,134 U.S. Dollars.

Table 2: Wash Trades Summary for IDEX and EtherDelta.

IDEX EtherDelta
# Self-Trades 28, 193 58, 791
# Wash Trades 213, 029 69, 711

Self-Trades Share (Of All Trades) 0.53% 1.09%
Wash Trades Share (Of All Trades) 3.99% 1.30%
Total Self-Traded Volume ETH 23, 716.08 136, 548.22

Total Wash Volume ETH 273, 027 155, 155
Total Self-Traded Volume USD 12, 587, 517 64, 801, 288

Total Wash Volume USD 83, 531, 254 75, 846, 518
Wash Trade Fees Received USD 250,594 227,540

# Self-Traded Tokens 239 2, 758
# Wash Tokens 380 2, 759

Wash Token Share 31.54% 42.12%
# Self-Trader Accounts 332 5, 501
# Wash Trader Accounts 659 5, 533

# Analyzed SCCs 199 48
# SCCs with Wash Trading 193 47

Mean # Tokens Washed per SCC 2.46 1.62

7 DISCUSSION
Our wash trade detection method has identified various wash trad-
ing structures and manipulated trading volumes worth $159 million.
We have used several parameters for the method, which we have
chosen very conservatively. This means our findings constitute a
lower bound of the actual extent of wash trading activities. If we
were to set these parameters in a more relaxed way, e.g. considering
SCCs with at least 10 repetitions instead of 100, or a higher margin
at which we define that a trader effectively did not change their
position, the number of detected wash trades would be higher. At
the same time it would be possible that some trades are falsely
recognized as wash trades. An example of this would be individual
traders who speculate in the short term, quickly buying back their
sold tokens, while coincidentally trading with the same other trader.
Especially in the case of self-trades, however, there is no room for
interpretation.

The question of why so much wash trading is done at all can
be answered as follows: Considering the thousands of different
tokens that exist, it can be difficult for token founders to get enough
attention to be listed on known exchanges. Therefore, some token
founders may be thinking about giving their project a jump start
with fake trading volume, which is one reason also suggested by
a recent report [5]. However, the wash trading activities on IDEX
and EtherDelta have declined significantly since mid-2018. This is
likely due to the emergence of new AMM-based exchanges such
as Uniswap and others. We do believe that actors willing to boost
a token using wash trades will also attempt to do so on the now
more popular AMM DEX. The question remains how wash trading
can be performed on these DEX, since users do not trade with each
other but against a liquidity pool.

7.1 Potential Countermeasures
A standard countermeasure that is implemented bymany exchanges
in traditional markets is self-trade prevention functionality. A single
account is prevented from filling its own buy or sell orders. Even
though IDEX’s off-chain trade matching engine claims to have
self-trade prevention functionality 5, we have observed successful
self-trades up until the end of our dataset (May 2020). EtherDelta
does not seem to implement such functionality. However, as shown
in the analysis of the wash trading structures, various other trading
topologies exist that can circumvent such a self-trade prevention
functionality.

While defining a limit to the number of trades that can be per-
formed with the same trading partners might seem like a viable
approach at first, it may disrupt legitimate trades, if the number
of traders in a token market is relatively small. Another option to
make it harder for wash traders to operate with multiple accounts
is the introduction of Know Your Customer (KYC) procedures, that
require traders to identify themselves with official identity infor-
mation. This is standard in the traditional domain, and on most
centralized exchanges, but not widely adopted in the realm of de-
centralized finance. IDEX has introduced KYC in July 20196, which
coincides with lower wash trading volumes.

5https://docs.idex.io/#self-trade-prevention
6https://medium.com/idex/idex-kyc-transition-period-and-updated-asset-
availability-for-us-markets-set-to-begin-d45e945f842d

https://docs.idex.io/#self-trade-prevention
https://medium.com/idex/idex-kyc-transition-period-and-updated-asset-availability-for-us-markets-set-to-begin-d45e945f842d
https://medium.com/idex/idex-kyc-transition-period-and-updated-asset-availability-for-us-markets-set-to-begin-d45e945f842d
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8 CONCLUSION AND FUTUREWORK
This paper is the first to analyze the phenomenon of wash trading
on decentralized cryptocurrency exchanges. We have presented a
method to detect wash trades, and have examined the decentralized
exchanges IDEX and EtherDelta on the Ethereum blockchain. On
an empirical basis, we have identified wash trading activities in
excess of 159 million U.S. Dollars and discovered common wash
trading structures. These structures consist mainly of one or two
accounts, but there also exist more complex patterns. Surprisingly,
self-trades occur frequently, which could easily be prevented. On
both exchanges, more than 30% of all tokens have been subject to
wash trading activity, and 10% of the tokens on EtherDelta have
been almost exclusively wash traded. These figures represent a
lower bound, but yet underpin the need for countermeasures that
also work in decentralized systems.

Future work can take multiple directions. Our volume match-
ing algorithm could be extended to check all contiguous subsets,
which would lead to approximately quadratic complexity, requir-
ing a highly efficient implementation or distributed computing. In
general, devising new wash trade detection algorithms can be of
interest. These might also include temporality aspects, which we
have not considered in this work. We also consider the investiga-
tion of recently popularized DEX such as Uniswap to be promising,
which are not based on the order book model. Furthermore, other
aspects can be investigated, such as the effect of wash trades on
price development and the token user community. Finally, new
decentralized finance concepts such as loans, derivatives and insur-
ances may offer further potential for manipulation which is not yet
well understood.
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