
Uniswap v3 Core
March 2021

Hayden Adams
hayden@uniswap.org

Noah Zinsmeister
noah@uniswap.org

Moody Salem
moody@uniswap.org

River Keefer
river@uniswap.org

Dan Robinson
dan@paradigm.xyz

ABSTRACT
Uniswap v3 is a noncustodial automated market maker imple-
mented for the Ethereum Virtual Machine. In comparison to earlier
versions of the protocol, Uniswap v3 provides increased capital
efficiency and fine-tuned control to liquidity providers, improves
the accuracy and convenience of the price oracle, and has a more
flexible fee structure.

1 INTRODUCTION
Automated market makers (AMMs) are agents that pool liquidity
and make it available to traders according to an algorithm [5]. Con-
stant function market makers (CFMMs), a broad class of AMMs of
which Uniswap is a member, have seen widespread use in the con-
text of decentralized finance, where they are typically implemented
as smart contracts that trade tokens on a permissionless blockchain
[2].

CFMMs as they are implemented today are often capital inef-
ficient. In the constant product market maker formula used by
Uniswap v1 and v2, only a fraction of the assets in the pool are
available at a given price. This is inefficient, particularly when
assets are expected to trade close to a particular price at all times.

Prior attempts to address this capital efficiency issue, such as
Curve [3] and YieldSpace [4], have involved building pools that use
different functions to describe the relation between reserves. This
requires all liquidity providers in a given pool to adhere to a single
formula, and could result in liquidity fragmentation if liquidity
providers want to provide liquidity within different price ranges.

In this paper, we present Uniswap v3, a novel AMM that gives
liquidity providers more control over the price ranges in which
their capital is used, with limited effect on liquidity fragmentation
and gas inefficiency. This design does not depend on any shared
assumption about the price behavior of the tokens. Uniswap v3
is based on the same constant product reserves curve as earlier
versions [1], but offers several significant new features:

• Concentrated Liquidity: Liquidity providers (LPs) are given
the ability to concentrate their liquidity by “bounding" it
within an arbitrary price range. This improves the pool’s
capital efficiency and allows LPs to approximate their pre-
ferred reserves curve, while still being efficiently aggregated
with the rest of the pool. We describe this feature in section
2 and its implementation in Section 6.

• Flexible Fees: The swap fee is no longer locked at 0.30%.
Rather, the fee tier for each pool (of which there can be
multiple per asset pair) is set on initialization (Section 3.1).
The initially supported fee tiers are 0.05%, 0.30%, and 1%.
UNI governance is able to add additional values to this set.

• Protocol Fee Governance: UNI governance has more flexibility
in setting the fraction of swap fees collected by the protocol
(Section 6.2.2).

• Improved Price Oracle: Uniswap v3 provides a way for users
to query recent price accumulator values, thus avoiding the
need to checkpoint the accumulator value at the exact be-
ginning and end of the period for which a TWAP is being
measured. (Section 5.1).

1



Hayden Adams, Noah Zinsmeister, Moody Salem, River Keefer, and Dan Robinson

• Liquidity Oracle: The contracts expose a time-weighted av-
erage liquidity oracle (Section 5.3).

The Uniswap v2 core contracts are non-upgradeable by de-
sign, so Uniswap v3 is implemented as an entirely new set of
contracts, available here. The Uniswap v3 core contracts are also
non-upgradeable, with some parameters controlled by governance
as described in Section 4.

2 CONCENTRATED LIQUIDITY
The defining idea of Uniswap v3 is that of concentrated liquidity:
liquidity bounded within some price range.

In earlier versions, liquidity was distributed uniformly along the

𝑥 · 𝑦 = 𝑘 (2.1)

reserves curve, where 𝑥 and 𝑦 are the respective reserves of two
assets X and Y, and 𝑘 is a constant [1]. In other words, earlier ver-
sions were designed to provide liquidity across the entire price
range (0,∞). This is simple to implement and allows liquidity to
be efficiently aggregated, but means that much of the assets held in
a pool are never touched.

Having considered this, it seems reasonable to allow LPs to
concentrate their liquidity to smaller price ranges than (0,∞). We
call liquidity concentrated to a finite range a position. A position
only needs to maintain enough reserves to support trading within
its range, and therefore can act like a constant product pool with
larger reserves (we call these the virtual reserves) within that range.

𝑎

𝑏

𝑐
𝑦real

𝑥real

X Reserves

Y
Re

se
rv
es

virtual reserves

Figure 1: Simulation of Virtual Liquidity

Specifically, a position only needs to hold enough of asset X to
cover price movement to its upper bound, because upwards price
movement1 corresponds to depletion of the X reserves. Similarly,
it only needs to hold enough of asset Y to cover price movement
to its lower bound. Fig. 1 depicts this relationship for a position on
a range [𝑝𝑎, 𝑝𝑏 ] and a current price 𝑝𝑐 ∈ [𝑝𝑎, 𝑝𝑏 ]. 𝑥real and 𝑦real
denote the position’s real reserves.

When the price exits a position’s range, the position’s liquidity
is no longer active, and no longer earns fees. At that point, its
1We take asset Y to be the unit of account, which corresponds to token1 in our
implementation.

liquidity is composed entirely of a single asset, because the reserves
of the other asset must have been entirely depleted. If the price ever
reenters the range, the liquidity becomes active again.

The amount of liquidity provided can be measured by the value
𝐿, which is equal to

√
𝑘 . The real reserves of a position are described

by the curve:

(𝑥 + 𝐿
√
𝑝𝑏

) (𝑦 + 𝐿
√
𝑝𝑎) = 𝐿2 (2.2)

This curve is a translation of formula 2.1 such that the position is
solvent exactly within its range (Fig. 2).

𝑎

𝑏

X Reserves

Y
Re

se
rv
es

virtual reserves (2.1)
real reserves (2.2)

Figure 2: Real Reserves

Liquidity providers are free to create as many positions as they
see fit, each on its own price range. In this way, LPs can approximate
any desired distribution of liquidity on the price space (see Fig. 3
for a few examples). Moreover, this serves as a mechanism to let
the market decide where liquidity should be allocated. Rational LPs
can reduce their capital costs by concentrating their liquidity in
a narrow band around the current price, and adding or removing
tokens as the price moves to keep their liquidity active.

2.1 Range Orders
Positions on very small ranges act similarly to limit orders—if the
range is crossed, the position flips from being composed entirely
of one asset, to being composed entirely of the other asset (plus
accrued fees). There are two differences between this range order
and a traditional limit order:

• There is a limit to how narrow a position’s range can be.
While the price is within that range, the limit order might
be partially executed.

• When the position has been crossed, it needs to be with-
drawn. If it is not, and the price crosses back across that
range, the position will be traded back, effectively reversing
the trade.

2

https://github.com/Uniswap/uniswap-v3-core


Uniswap v3 Core

0 ∞
Price

Li
qu

id
ity

(I) Uniswap v2

𝑝𝑎 𝑝𝑏

Price

Li
qu

id
ity

(II) A single position on [𝑝𝑎, 𝑝𝑏 ]

Price

Li
qu

id
ity

(III) A collection of custom positions

Figure 3: Example Liquidity Distributions

3 ARCHITECTURAL CHANGES
Uniswap v3 makes a number of architectural changes, some of
which are necessitated by the inclusion of concentrated liquidity,
and some of which are independent improvements.

3.1 Multiple Pools Per Pair
In Uniswap v1 and v2, every pair of tokens corresponds to a single
liquidity pool, which applies a uniform fee of 0.30% to all swaps.
While this default fee tier historically worked well enough for many
tokens, it is likely too high for some pools (such as pools between
two stablecoins), and too low for others (such as pools that include
highly volatile or rarely traded tokens).

Uniswap v3 introduces multiple pools for each pair of tokens,
each with a different swap fee. All pools are created by the same
factory contract. The factory contract initially allows pools to be
created at three fee tiers: 0.05%, 0.30%, and 1%. Additional fee tiers
can be enabled by UNI governance.

3.2 Non-Fungible Liquidity
3.2.1 Non-Compounding Fees. Fees earned in earlier versions were
continuously deposited in the pool as liquidity. This meant that
liquidity in the pool would grow over time, even without explicit
deposits, and that fee earnings compounded.

In Uniswap v3, due to the non-fungible nature of positions, this
is no longer possible. Instead, fee earnings are stored separately
and held as the tokens in which the fees are paid (see Section 6.2.2).

3.2.2 Removal of Native Liquidity Tokens. In Uniswap v1 and v2,
the pool contract is also an ERC-20 token contract, whose tokens
represent liquidity held in the pool. While this is convenient, it
actually sits uneasily with the Uniswap v2 philosophy that any-
thing that does not need to be in the core contracts should be in the
periphery, and blessing one “canonical" ERC-20 implementation
discourages the creation of improved ERC-20 token wrappers. Ar-
guably, the ERC-20 token implementation should have been in the
periphery, as a wrapper on a single liquidity position in the core
contract.

The changes made in Uniswap v3 force this issue by making
completely fungible liquidity tokens impossible. Due to the custom
liquidity provision feature, fees are now collected and held by the

pool as individual tokens, rather than automatically reinvested as
liquidity in the pool.

As a result, in v3, the pool contract does not implement the
ERC-20 standard. Anyone can create an ERC-20 token contract in
the periphery that makes a liquidity position more fungible, but
it will have to have additional logic to handle distribution of, or
reinvestment of, collected fees. Alternatively, anyone could create
a periphery contract that wraps an individual liquidity position
(including collected fees) in an ERC-721 non-fungible token.

4 GOVERNANCE
The factory has an owner, which is initially controlled by UNI
tokenholders.2 The owner does not have the ability to halt the
operation of any of the core contracts.

As in Uniswap v2, Uniswap v3 has a protocol fee that can be
turned on by UNI governance. In Uniswap v3, UNI governance has
more flexibility in choosing the fraction of swap fees that go to the
protocol, and is able to choose any fraction 1

𝑁
where 4 ≤ 𝑁 ≤ 10,

or 0. This parameter can be set on a per-pool basis.
UNI governance also has the ability to add additional fee tiers.

When it adds a new fee tier, it can also define the tickSpacing
(see Section 6.1) corresponding to that fee tier. Once a fee tier is
added to the factory, it cannot be removed (and the tickSpacing
cannot be changed). The initial fee tiers and tick spacings supported
are 0.05% (with a tick spacing of 10, approximately 0.10% between
initializable ticks), 0.30% (with a tick spacing of 60, approximately
0.60% between initializable ticks), and 1% (with a tick spacing of
200, approximately 2.02% between ticks.

Finally, UNI governance has the power to transfer ownership to
another address.

5 ORACLE UPGRADES
Uniswap v3 includes three significant changes to the time-weighted
average price (TWAP) oracle that was introduced by Uniswap v2.

Most significantly, Uniswap v3 removes the need for users of
the oracle to track previous values of the accumulator externally.
Uniswap v2 requires users to checkpoint the accumulator value
at both the beginning and end of the time period for which they
2Specifically, the owner will be initialized to the Timelock contract from UNI gover-
nance, 0x1a9c8182c09f50c8318d769245bea52c32be35bc.

3



Hayden Adams, Noah Zinsmeister, Moody Salem, River Keefer, and Dan Robinson

wanted to compute a TWAP. Uniswap v3 brings the accumulator
checkpoints into core, allowing external contracts to compute on-
chain TWAPs over recent periods without storing checkpoints of
the accumulator value.

Another change is that instead of accumulating the sum of prices,
allowing users to compute the arithmetic mean TWAP, Uniswap
v3 tracks the sum of log prices, allowing users to compute the
geometric mean TWAP.

Finally, Uniswap v3 adds a liquidity accumulator that is tracked
alongside the price accumulator, which accumulates 1

𝐿
for each

second. This liquidity accumulator is useful for external contracts
that want to implement liquidity mining on top of Uniswap v3. It
can also be used by other contracts to inform a decision on which
of the pools corresponding to a pair (see section 3.1) will have the
most reliable TWAP.

5.1 Oracle Observations
As in Uniswap v2, Uniswap v3 tracks a running accumulator of
the price at the beginning of each block, multiplied by the number
of seconds since the last block.

A pool in Uniswap v2 stores only the most recent value of this
price accumulator—that is, the value as of the last block in which a
swap occurred. When computing average prices in Uniswap v2, it
is the responsibility of the external caller to provide the previous
value of the price accumulator. With many users, each will have to
provide their own methodology for checkpointing previous values
of the accumulator, or coordinate on a shared method to reduce
costs. And there is no way to guarantee that every block in which
the pool is touched will be reflected in the accumulator.

In Uniswap v3, the pool stores a list of previous values for the
price accumulator (as well as the liquidity accumulator described
in section 5.3). It does this by automatically checkpointing the
accumulator value every time the pool is touched for the first time
in a block, cycling through an array where the oldest checkpoint is
eventually overwritten by a new one, similar to a circular buffer.
While this array initially only has room for a single checkpoint,
anyone can initialize additional storage slots to lengthen the array,
extending to as many as 65,536 checkpoints.3 This imposes the
one-time gas cost of initializing additional storage slots for this
array on whoever wants this pair to checkpoint more slots.

The pool exposes the array of past observations to users, as well
as a convenience function for finding the (interpolated) accumulator
value at any historical timestamp within the checkpointed period.

5.2 Geometric Mean Price Oracle
Uniswap v2maintains two price accumulators—one for the price of
token0 in terms of token1, and one for the price of token1 in terms
of token0. Users can compute the time-weighted arithmetic mean
of the prices over any period, by subtracting the accumulator value
at the beginning of the period from the accumulator at the end of
the period, then dividing the difference by the number of seconds
in the period. Note that accumulators for token0 and token1 are
tracked separately, since the time-weighted arithmetic mean price

3The maximum of 65,536 checkpoints allows fetching checkpoints for at least 9 days
after they are written, assuming 13 seconds pass between each block and a checkpoint
is written every block.

of token0 is not equivalent to the reciprocal of the time-weighted
arithmetic mean price of token1.

Using the time-weighted geometric mean price, as Uniswap v3
does, avoids the need to track separate accumulators for these
ratios. The geometric mean of a set of ratios is the reciprocal of the
geometric mean of their reciprocals. It is also easy to implement
in Uniswap v3 because of its implementation of custom liquidity
provision, as described in section 6. In addition, the accumulator can
be stored in a smaller number of bits, since it tracks log 𝑃 rather than
𝑃 , and log 𝑃 can represent a wide range of prices with consistent
precision.4 Finally, there is a theoretical argument that the time-
weighted geometric mean price should be a truer representation of
the average price.5

Instead of tracking the cumulative sum of the price 𝑃 , Uniswap
v3 accumulates the cumulative sumof the current tick index (𝑙𝑜𝑔1.0001𝑃 ,
the logarithm of price for base 1.0001, which is precise up to 1 basis
point). The accumulator at any given time is equal to the sum of
𝑙𝑜𝑔1.0001 (𝑃) for every second in the history of the contract:

𝑎𝑡 =

𝑡∑
𝑖=1

log1.0001 (𝑃𝑖 ) (5.1)

We want to estimate the geometric mean time-weighted average
price (𝑝𝑡1,𝑡2 ) over any period 𝑡1 to 𝑡2.

𝑃𝑡1,𝑡2 =
©­«
𝑡2∏
𝑖=𝑡1

𝑃𝑖
ª®¬

1
𝑡2−𝑡1

(5.2)

To compute this, you can look at the accumulator’s value at 𝑡1
and at 𝑡2, subtract the first value from the second, divide by the
number of seconds elapsed, and compute 1.0001𝑥 to compute the
time weighted geometric mean price.

log1.0001
(
𝑃𝑡1,𝑡2

)
=

∑𝑡2
𝑖=𝑡1

log1.0001 (𝑃𝑖 )
𝑡2 − 𝑡1

(5.3)

log1.0001
(
𝑃𝑡1,𝑡2

)
=
𝑎𝑡2 − 𝑎𝑡1

𝑡2 − 𝑡1
(5.4)

𝑃𝑡1,𝑡2 = 1.0001
𝑎𝑡2−𝑎𝑡1
𝑡2−𝑡1 (5.5)

5.3 Liquidity Oracle
In addition to the seconds-weighted accumulator of log1.0001 𝑝𝑟𝑖𝑐𝑒 ,
Uniswap v3 also tracks a seconds-weighted accumulator of 1

𝐿
(the

reciprocal of the virtual liquidity currently in range) at the begin-
ning of each block: secondsPerLiquidityCumulative (𝑠𝑝𝑙 ).

This can be used by external liquidity mining contracts to fairly
allocate rewards. If an external contract wants to distribute rewards
at an even rate of 𝑅 tokens per second to all active liquidity in the

4In order to support tolerable precision across all possible prices, Uniswap v2 repre-
sents each price as a 224-bit fixed-point number. Uniswap v3 only needs to represent
𝑙𝑜𝑔1.0001𝑃 as a signed 24-bit number, and still can detect price movements of one tick,
or 1 basis point.
5While arithmetic mean TWAPs are much more widely used, they should theoretically
be less accurate inmeasuring a geometric Brownianmotion process (which is how price
movements are usuallymodeled). The arithmeticmean of a geometric Brownianmotion
process will tend to overweight higher prices (where small percentage movements
correspond to large absolute movements) relative to lower ones.

4



Uniswap v3 Core

contract, and a position with 𝐿 liquidity was active from 𝑡0 to 𝑡1,
then its rewards for that period would be 𝑅·L·(𝑠𝑝𝑙 (𝑡1) − 𝑠𝑝𝑙 (𝑡0)).

In order to extend this so that concentrated liquidity is rewarded
only when it is in range, Uniswap v3 stores a computed checkpoint
based on this value every time a tick is crossed, as described in
section 6.3.

This accumulator can also be used by on-chain contracts to make
their oracles stronger (such as by evaluating which fee-tier pool to
use the oracle from).

6 IMPLEMENTING CONCENTRATED
LIQUIDITY

The rest of this paper describes how concentrated liquidity provi-
sion works, and gives a high-level description of how it is imple-
mented in the contracts.

6.1 Ticks and Ranges
To implement custom liquidity provision, the space of possible
prices is demarcated by discrete ticks. Liquidity providers can pro-
vide liquidity in a range between any two ticks (which need not be
adjacent).

Each range can be specified as a pair of signed integer tick indices:
a lower tick (𝑖𝑙 ) and an upper tick (𝑖𝑢 ). Ticks represent prices at
which the virtual liquidity of the contract can change. We will
assume that prices are always expressed as the price of one of the
tokens—called token0—in terms of the other token—token1. The
assignment of the two tokens to token0 and token1 is arbitrary
and does not affect the logic of the contract (other than through
possible rounding errors).

Conceptually, there is a tick at every price 𝑝 that is an integer
power of 1.0001. Identifying ticks by an integer index 𝑖 , the price at
each is given by:

𝑝 (𝑖) = 1.0001𝑖 (6.1)

This has the desirable property of each tick being a .01% (1 basis
point) price movement away from each of its neighboring ticks.

For technical reasons explained in 6.2.1, however, pools actually
track ticks at every square root price that is an integer power of√
1.0001. Consider the above equation, transformed into square root

price space:

√
𝑝 (𝑖) =

√
1.0001

𝑖
= 1.0001

𝑖
2 (6.2)

As an example,√𝑝 (0)—the square root price at tick 0—is 1,√𝑝 (1)
is
√
1.0001 ≈ 1.00005, and √

𝑝 (−1) is 1√
1.0001

≈ 0.99995.
When liquidity is added to a range, if one or both of the ticks

is not already used as a bound in an existing position, that tick is
initialized.

Not every tick can be initialized. The pool is instantiated with a
parameter, tickSpacing (𝑡𝑠 ); only ticks with indexes that are divisi-
ble by tickSpacing can be initialized. For example, if tickSpacing
is 2, then only even ticks (...-4, -2, 0, 2, 4...) can be initialized. Small
choices for tickSpacing allow tighter and more precise ranges, but
may cause swaps to be more gas-intensive (since each initialized
tick that a swap crosses imposes a gas cost on the swapper).

Whenever the price crosses an initialized tick, virtual liquidity
is kicked in or out. The gas cost of an initialized tick crossing is
constant, and is not dependent on the number of positions being
kicked in or out at that tick.

Ensuring that the right amount of liquidity is kicked in and out
of the pool when ticks are crossed, and ensuring that each position
earns its proportional share of the fees that were accrued while
it was within range, requires some accounting within the pool.
The pool contract uses storage variables to track state at a global
(per-pool) level, at a per-tick level, and at a per-position level.

6.2 Global State
The global state of the contract includes seven storage variables
relevant to swaps and liquidity provision. (It has other storage
variables that are used for the oracle, as described in section 5.)

Type Variable Name Notation
uint128 liquidity 𝐿

uint160 sqrtPriceX96
√
𝑃

int24 tick 𝑖𝑐
uint256 feeGrowthGlobal0X128 𝑓𝑔,0
uint256 feeGrowthGlobal1X128 𝑓𝑔,1
uint128 protocolFees.token0 𝑓𝑝,0
uint128 protocolFees.token1 𝑓𝑝,1

Table 1: Global State

6.2.1 Price and Liquidity. In Uniswap v2, each pool contract tracks
the pool’s current reserves, 𝑥 and 𝑦. In Uniswap v3, the contract
could be thought of as having virtual reserves—values for 𝑥 and 𝑦
that allow you to describe the contract’s behavior (between two
adjacent ticks) as if it followed the constant product formula.

Instead of tracking those virtual reserves, however, the pool
contract tracks two different values: liquidity (𝐿) and sqrtPrice
(
√
𝑃 ). These could be computed from the virtual reserves with the

following formulas:

𝐿 =
√
𝑥𝑦 (6.3)

√
𝑃 =

√
𝑦

𝑥
(6.4)

Conversely, these values could be used to compute the virtual
reserves:

𝑥 =
𝐿
√
𝑃

(6.5)

𝑦 = 𝐿 ·
√
𝑃 (6.6)

Using 𝐿 and
√
𝑃 is convenient because only one of them changes

at a time. Price (and thus
√
𝑃 ) changes when swapping within a

tick; liquidity changes when crossing a tick, or when minting or
burning liquidity. This avoids some rounding errors that could be
encountered if tracking virtual reserves.

You may notice that the formula for liquidity (based on virtual
reserves) is similar to the formula used to initialize the quantity of
liquidity tokens (based on actual reserves) in Uniswap v2. before

5



Hayden Adams, Noah Zinsmeister, Moody Salem, River Keefer, and Dan Robinson

any fees have been earned. In some ways, liquidity can be thought
of as virtual liquidity tokens.

Alternatively, liquidity can be thought of as the amount that
token1 reserves (either actual or virtual) changes for a given change
in

√
𝑃 :

𝐿 =
Δ𝑌

Δ
√
𝑃

(6.7)

We track
√
𝑃 instead of 𝑃 to take advantage of this relationship,

and to avoid having to take any square roots when computing
swaps, as described in section 6.2.3.

The global state also tracks the current tick index as tick (𝑖𝑐 ), a
signed integer representing the current tick (more specifically, the
nearest tick below the current price). This is an optimization (and
a way of avoiding precision issues with logarithms), since at any
time, you should be able to compute the current tick based on the
current sqrtPrice. Specifically, at any given time, the following
equation should be true:

𝑖𝑐 =

⌊
log√1.0001

√
𝑃

⌋
(6.8)

6.2.2 Fees. Each pool is initialized with an immutable value, fee
(𝛾 ), representing the fee paid by swappers in units of hundredths
of a basis point (0.0001%).

It also tracks the current protocol fee, 𝜙 (which is initialized to
zero, but can changed by UNI governance).6 This number gives you
the fraction of the fees paid by swappers that currently goes to the
protocol rather than to liquidity providers. 𝜙 only has a limited set
of permitted values: 0, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, or 1/10.

The global state also tracks two numbers: feeGrowthGlobal0
(𝑓𝑔,0) and feeGrowthGlobal1 (𝑓𝑔,1). These represent the total amount
of fees that have been earned per unit of virtual liquidity (𝐿), over
the entire history of the contract. You can think of them as the total
amount of fees that would have been earned by 1 unit of unbounded
liquidity that was deposited when the contract was first initialized.
They are stored as fixed-point unsigned 128x128 numbers. Note
that in Uniswap v3, fees are collected in the tokens themselves
rather than in liquidity, for reasons explained in section 3.2.1.

Finally, the global state tracks the total accumulated uncollected
protocol fee in each token, protocolFees0 (𝑓𝑝,0) and protocolFees1
(𝑓𝑝,1). This is an unsigned uint128. The accumulated protocol fees
can be collected byUNI governance, by calling the collectProtocol
function.

6.2.3 Swapping Within a Single Tick. For small enough swaps, that
do not move the price past a tick, the contracts act like an 𝑥 · 𝑦 = 𝑘

pool.
Suppose 𝛾 is the fee, i.e., 0.003, and 𝑦𝑖𝑛 as the amount of token1

sent in.
First, feeGrowthGlobal1 and protocolFees1 are incremented:

Δ𝑓𝑔,1 = 𝑦𝑖𝑛 · 𝛾 · (1 − 𝜙) (6.9)

Δ𝑓𝑝,1 = 𝑦𝑖𝑛 · 𝛾 · 𝜙 (6.10)
Δ𝑦 is the increase in 𝑦 (after the fee is taken out).

6Technically, the storage variable called “protocolFee" is the denominator of this
fraction (or is zero, if 𝜙 is zero).

Δ𝑦 = 𝑦𝑖𝑛 · (1 − 𝛾) (6.11)
If you used the computed virtual reserves (𝑥 and𝑦) for the token0

and token1 balances, then this formula could be used to find the
amount of token0 sent out:

𝑥𝑒𝑛𝑑 =
𝑥 · 𝑦
𝑦 + Δ𝑦

(6.12)

But remember that in v3, the contract actually tracks liquidity (𝐿)
and square root of price (

√
𝑃 ) instead of 𝑥 and 𝑦. We could compute

𝑥 and 𝑦 from those values, and then use those to calculate the
execution price of the trade. But it turns out that there are simple
formulas that describe the relationship between Δ

√
𝑃 and Δ𝑦, for a

given 𝐿 (which can be derived from formula 6.7):

Δ
√
𝑃 =

Δ𝑦

𝐿
(6.13)

Δ𝑦 = Δ
√
𝑃 · 𝐿 (6.14)

There are also simple formulas that describe the relationship
between Δ 1√

𝑃
and Δ𝑥 :

Δ
1
√
𝑃

=
Δ𝑥

𝐿
(6.15)

Δ𝑥 = Δ
1
√
𝑃
· 𝐿 (6.16)

When swapping one token for the other, the pool contract can
first compute the new

√
𝑃 using formula 6.13 or 6.15, and then

can compute the amount of token0 or token1 to send out using
formula 6.14 or 6.16.

These formulas will work for any swap that does not push
√
𝑃

past the price of the next initialized tick. If the computed Δ
√
𝑃

would cause
√
𝑃 to move past that next initialized tick, the contract

must only cross up to that tick—using up only part of the swap—and
then cross the tick, as described in section 6.3.1, before continuing
with the rest of the swap.

6.2.4 Initialized Tick Bitmap. If a tick is not used as the endpoint
of a range with any liquidity in it—that is, if the tick is uninitial-
ized—then that tick can be skipped during swaps.

As an optimization to make finding the next initialized tick more
efficient, the pool tracks a bitmap tickBitmap of initialized ticks.
The position in the bitmap that corresponds to the tick index is set
to 1 if the tick is initialized, and 0 if it is not initialized.

When a tick is used as an endpoint for a new position, and that
tick is not currently used by any other liquidity, the tick is initialized,
and the corresponding bit in the bitmap is set to 1. An initialized
tick can become uninitialized again if all of the liquidity for which
it is an endpoint is removed, in which case that tick’s position on
the bitmap is zeroed out.

6.3 Tick-Indexed State
The contract needs to store information about each tick in order to
track the amount of net liquidity that should be added or removed
when the tick is crossed, as well as to track the fees earned above
and below that tick.

6



Uniswap v3 Core

Start

S0. Check input

S1. Swap within current interval

S2. Is there remaining input or output?

S4. Cross next tick

Stop

S5. Execute computed swap

Pass

Fail

Yes

No

Figure 4: Swap Control Flow

The contract stores a mapping from tick indexes (int24) to the
following seven values:

Type Variable Name Notation
int128 liquidityNet Δ𝐿
uint128 liquidityGross 𝐿𝑔
uint256 feeGrowthOutside0X128 𝑓𝑜,0
uint256 feeGrowthOutside1X128 𝑓𝑜,1
uint256 secondsOutside 𝑠𝑜
uint256 tickCumulativeOutside 𝑖𝑜
uint256 secondsPerLiquidityOutsideX128 𝑠𝑙𝑜

Table 2: Tick-Indexed State

Each tick tracks Δ𝐿, the total amount of liquidity that should
be kicked in or out when the tick is crossed. The tick only needs
to track one signed integer: the amount of liquidity added (or, if
negative, removed) when the tick is crossed going left to right. This
value does not need to be updated when the tick is crossed (but
only when a position with a bound at that tick is updated).

We want to be able to uninitialize a tick when there is no longer
any liquidity referencing that tick. Since Δ𝐿 is a net value, it’s
necessary to track a gross tally of liquidity referencing the tick,
liquidityGross. This value ensures that even if net liquidity at
a tick is 0, we can still know if a tick is referenced by at least one
underlying position or not, which tells us whether to update the
tick bitmap.

feeGrowthOutside{0,1} are used to track how many fees were
accumulated within a given range. Since the formulas are the same
for the fees collected in token0 and token1, we will omit that sub-
script for the rest of this section.

You can compute the fees earned per unit of liquidity in token 0
above (𝑓𝑎) and below (𝑓𝑏 ) a tick 𝑖 with a formula that depends on
whether the price is currently within or outside that range—that is,
whether the current tick index 𝑖𝑐 is greater than or equal to 𝑖:

𝑓𝑎 (𝑖) =
{
𝑓𝑔 − 𝑓𝑜 (𝑖) 𝑖𝑐 ≥ 𝑖

𝑓𝑜 (𝑖) 𝑖𝑐 < 𝑖
(6.17)

𝑓𝑏 (𝑖) =
{
𝑓𝑜 (𝑖) 𝑖𝑐 ≥ 𝑖

𝑓𝑔 − 𝑓𝑜 (𝑖) 𝑖𝑐 < 𝑖
(6.18)

We can use these functions to compute the total amount of
cumulative fees per share 𝑓𝑟 in the range between two ticks—a
lower tick 𝑖𝑙 and an upper tick 𝑖𝑢 :

𝑓𝑟 = 𝑓𝑔 − 𝑓𝑏 (𝑖𝑙 ) − 𝑓𝑎 (𝑖𝑢 ) (6.19)
𝑓𝑜 needs to be updated each time the tick is crossed. Specifically,

as a tick 𝑖 is crossed in either direction, its 𝑓𝑜 (for each token) should
be updated as follows:

𝑓𝑜 (𝑖) := 𝑓𝑔 − 𝑓𝑜 (𝑖) (6.20)
𝑓𝑜 is only needed for ticks that are used as either the lower or

upper bound for at least one position. As a result, for efficiency, 𝑓𝑜 is
not initialized (and thus does not need to be updated when crossed)
until a position is created that has that tick as one of its bounds.
When 𝑓𝑜 is initialized for a tick 𝑖 , the value—by convention—is
chosen as if all of the fees earned to date had occurred below that
tick:

𝑓𝑜 :=

{
𝑓𝑔 𝑖𝑐 ≥ 𝑖

0 𝑖𝑐 < 𝑖
(6.21)

Note that since 𝑓𝑜 values for different ticks could be initialized
at different times, comparisons of the 𝑓𝑜 values for different ticks
are not meaningful, and there is no guarantee that values for 𝑓𝑜
will be consistent. This does not cause a problem for per-position
accounting, since, as described below, all the position needs to know
is the growth in 𝑔 within a given range since that position was last
touched.

7



Hayden Adams, Noah Zinsmeister, Moody Salem, River Keefer, and Dan Robinson

Finally, the contract also stores secondsOutside (𝑠𝑜 ),
secondsPerLiquidityOutside, and tickCumulativeOutside for
each tick. These values are not used within the contract, but are
tracked for the benefit of external contracts that need more fine-
grained information about the pool’s behavior (for purposes like
liquidity mining).

All three of these indexes work similarly to the fee growth in-
dexes described above. But where the feeGrowthOutside{0,1}
indexes track feeGrowthGlobal{0,1}, the secondsOutside index
tracks seconds (that is, the current timestamp),
secondsPerLiquidityOutside tracks the 1/𝐿 accumulator
(secondsPerLiquidityCumulative) described in section 5.3, and
tickCumulativeOutside tracks the log1.0001 𝑃 accumulator de-
scribed in section 5.2.

For example, the seconds spent above (𝑠𝑎) and below (𝑠𝑏 ) a given
tick is computed differently based on whether the current price is
within that range, and the seconds spent within a range (𝑠𝑟 ) can be
computed using the values of 𝑠𝑎 and 𝑠𝑏 :

𝑡𝑎 (𝑖) =
{
𝑡 − 𝑡𝑜 (𝑖) 𝑖𝑐 ≥ 𝑖

𝑡𝑜 (𝑖) 𝑖𝑐 < 𝑖
(6.22)

𝑡𝑏 (𝑖) =
{
𝑡𝑜 (𝑖) 𝑖𝑐 ≥ 𝑖

𝑡 − 𝑡𝑜 (𝑖) 𝑖𝑐 < 𝑖
(6.23)

𝑡𝑟 (𝑖𝑙 , 𝑖𝑢 ) = 𝑡 − 𝑡𝑏 (𝑖𝑙 ) − 𝑡𝑎 (𝑖𝑢 ) (6.24)
The number of seconds spent within a range between two times

𝑡1 and 𝑡2 can be computed by recording the value of 𝑠𝑟 (𝑖𝑙 , 𝑖𝑢 ) at 𝑡1
and at 𝑡2, and subtracting the former from the latter.

Like 𝑓𝑜 , 𝑠𝑜 does not need to be tracked for ticks that are not
on the edge of any position. Therefore, it is not initialized until a
position is created that is bounded by that tick. By convention, it is
initialized as if every second since the Unix timestamp 0 had been
spent below that tick:

𝑡𝑜 (𝑖) :=
{
𝑡 𝑖𝑐 ≥ 𝑖

0 𝑖𝑐 < 𝑖
(6.25)

As with 𝑓𝑜 values, 𝑡𝑜 values are not meaningfully comparable
across different ticks. 𝑡𝑜 is only meaningful in computing the num-
ber of seconds that liquidity was within some particular range
between some defined start time (which must be after 𝑡𝑜 was ini-
tialized for both ticks) and some end time.

6.3.1 Crossing a Tick. As described in section 6.2.3, Uniswap v3
acts like it obeys the constant product formula when swapping
between initialized ticks. When a swap crosses an initialized tick,
however, the contract needs to add or remove liquidity, to ensure
that no liquidity provider is insolvent. This means the Δ𝐿 is fetched
from the tick, and applied to the global 𝐿.

The contract also needs to update the tick’s own state, in order
to track the fees earned (and seconds spent) within ranges bounded
by this tick. The feeGrowthOutside{0,1} and secondsOutside
values are updated to both reflect current values, as well as the
proper orientation relative to the current tick:

𝑓𝑜 := 𝑓𝑔 − 𝑓𝑜 (6.26)

𝑡𝑜 := 𝑡 − 𝑡𝑜 (6.27)
Once a tick is crossed, the swap can continue as described in

section 6.2.3 until it reaches the next initialized tick.

6.4 Position-Indexed State
The contract has a mapping from user (an address), lower bound
(a tick index, int24), and upper bound (a tick index, int24) to a
specific Position struct. Each Position tracks three values:

Type Variable Name Notation
uint128 liquidity 𝑙

uint256 feeGrowthInside0LastX128 𝑓𝑟,0 (𝑡0)
uint256 feeGrowthInside1LastX128 𝑓𝑟,1 (𝑡0)

Table 3: Position-Indexed State

liquidity (𝑙) means the amount of virtual liquidity that the
position represented the last time this position was touched. Specif-
ically, liquidity could be thought of as √𝑥 · 𝑦, where 𝑥 and 𝑦 are
the respective amounts of virtual token0 and virtual token1 that
this liquidity contributes to the pool at any time that it is within
range. Unlike pool shares in Uniswap v2 (where the value of each
share grows over time), the units for liquidity do not change as fees
are accumulated; it is always measured as √𝑥 · 𝑦, where 𝑥 and 𝑦
are quantities of token0 and token1, respectively.

This liquidity number does not reflect the fees that have been
accumulated since the contract was last touched, which we will
call uncollected fees. Computing these uncollected fees requires
additional stored values on the position, feeGrowthInside0Last
(𝑓𝑟,0 (𝑡0)) and feeGrowthInside1Last (𝑓𝑟,1 (𝑡0)), as described be-
low.

6.4.1 setPosition. The setPosition function allows a liquidity
provider to update their position.

Two of the arguments to setPosition—lowerTick and upperTick—
when combined with the msg.sender, together specify a position.

The function takes one additional parameter, liquidityDelta,
to specify how much virtual liquidity the user wants to add or (if
negative) remove.

First, the function computes the uncollected fees (𝑓𝑢 ) that the
position is entitled to, in each token.7 The amount collected in fees
is credited to the user and netted against the amount that they
would send in or out for their virtual liquidity deposit.

To compute uncollected fees of a token, you need to know
how much 𝑓𝑟 for the position’s range (calculated from the range’s
𝑖𝑙 and 𝑖𝑟 as described in section 6.3) has grown since the last
time fees were collected for that position. The growth in fees in
a given range per unit of liquidity over between times 𝑡0 and 𝑡1
is simply 𝑓𝑟 (𝑡1) − 𝑓𝑟 (𝑡0) (where 𝑓𝑟 (𝑡0) is stored in the position as
feeGrowthInside{0,1}Last, and 𝑓𝑟 (𝑡1) can be computed from
the current state of the ticks). Multiplying this by the position’s
liquidity gives us the total uncollected fees in token 0 for this
position:
7Since the formulas for computing uncollected fees in each token are the same, we
will omit that subscript for the rest of this section.

8



Uniswap v3 Core

𝑓𝑢 = 𝑙 · (𝑓𝑟 (𝑡1) − 𝑓𝑟 (𝑡0)) (6.28)
Then, the contract updates the position’s liquidity by adding

liquidityDelta. It also adds liquidityDelta to the liquidityNet
value for the tick at the bottom end of the range, and subtracts it
from the liquidityNet at the upper tick (to reflect that this new
liquidity would be added when the price crosses the lower tick
going up, and subtracted when the price crosses the upper tick
going up). If the pool’s current price is within the range of this
position, the contract also adds liquidityDelta to the contract’s
global liquidity value.

Finally, the pool transfers tokens from (or, if liquidityDelta
is negative, to) the user, corresponding to the amount of liquidity
burned or minted.

The amount of token0 (Δ𝑋 ) or token1 (Δ𝑌 ) that needs to be
deposited can be thought of as the amount that would be sold from
the position if the price were to move from the current price (𝑃 ) to
the upper tick or lower tick (for token0 or token1, respectively).
These formulas can be derived from formulas 6.14 and 6.16, and
depend on whether the current price is below, within, or above the
range of the position:

Δ𝑌 =


0 𝑖𝑐 < 𝑖𝑙

Δ𝐿 · (
√
𝑃 −

√
𝑝 (𝑖𝑙 )) 𝑖𝑙 ≤ 𝑖𝑐 < 𝑖𝑢

Δ𝐿 · (
√
𝑝 (𝑖𝑢 ) −

√
𝑝 (𝑖𝑙 )) 𝑖𝑐 ≥ 𝑖𝑢

(6.29)

Δ𝑋 =


Δ𝐿 · ( 1√

𝑝 (𝑖𝑙 )
− 1√

𝑝 (𝑖𝑢 )
) 𝑖𝑐 < 𝑖𝑙

Δ𝐿 · ( 1√
𝑃
− 1√

𝑝 (𝑖𝑢 )
) 𝑖𝑙 ≤ 𝑖𝑐 < 𝑖𝑢

0 𝑖𝑐 ≥ 𝑖𝑢

(6.30)

REFERENCES
[1] Hayden Adams, Noah Zinsmeister, and Dan Robinson. 2020. Uniswap v2 Core.

Retrieved Feb 24, 2021 from https://uniswap.org/whitepaper.pdf
[2] Guillermo Angeris and Tarun Chitra. 2020. Improved Price Oracles: Constant

Function Market Makers. In Proceedings of the 2nd ACM Conference on Advances
in Financial Technologies (AFT ’20). Association for Computing Machinery, New
York, NY, United States, 80–91. https://doi.org/10.1145/3419614.3423251

[3] Michael Egorov. 2019. StableSwap - Efficient Mechanism for Stablecoin Liquidity.
Retrieved Feb 24, 2021 from https://www.curve.fi/stableswap-paper.pdf

[4] Allan Niemerg, Dan Robinson, and Lev Livnev. 2020. YieldSpace: An Automated
Liquidity Provider for Fixed Yield Tokens. Retrieved Feb 24, 2021 from https:
//yield.is/YieldSpace.pdf

[5] Abraham Othman. 2012. Automated Market Making: Theory and Practice. Ph.D.
Dissertation. Carnegie Mellon University.

DISCLAIMER
This paper is for general information purposes only. It does not
constitute investment advice or a recommendation or solicitation to
buy or sell any investment and should not be used in the evaluation
of the merits of making any investment decision. It should not be
relied upon for accounting, legal or tax advice or investment rec-
ommendations. This paper reflects current opinions of the authors
and is not made on behalf of Uniswap Labs, Paradigm, or their
affiliates and does not necessarily reflect the opinions of Uniswap
Labs, Paradigm, their affiliates or individuals associated with them.
The opinions reflected herein are subject to change without being
updated.

9

https://uniswap.org/whitepaper.pdf
https://doi.org/10.1145/3419614.3423251
https://www.curve.fi/stableswap-paper.pdf
https://yield.is/YieldSpace.pdf
https://yield.is/YieldSpace.pdf

	Abstract
	1 Introduction
	2 Concentrated Liquidity
	2.1 Range Orders

	3 Architectural Changes
	3.1 Multiple Pools Per Pair
	3.2 Non-Fungible Liquidity

	4 Governance
	5 Oracle Upgrades
	5.1 Oracle Observations
	5.2 Geometric Mean Price Oracle
	5.3 Liquidity Oracle

	6 Implementing Concentrated Liquidity
	6.1 Ticks and Ranges
	6.2 Global State
	6.3 Tick-Indexed State
	6.4 Position-Indexed State

	References

