Decentralized Finance

Decentralized Exchanges (DEX)

Instructors: Dan Boneh, Arthur Gervais, Andrew Miller, Christine Parlour, Dawn Song

Stanford
University

Imperial College London

UNIVERSITY OF ILLINOIS

Financial Exchanges

Financial Exchanges 101

Trade Matching Models

Exchange

Non-Custodial
Trade Settlement

Order Book

Two Order Book Models

(Fast matching

+ No fees for canceled orders
- No censorship resistance
- Exchange front running

EtherDelta

LOB DEX: Lessons Learned

- Advantages:
- No KYC/AML
- No fees paid to the exchange
- No impermanent loss (explained later in AMM)
- Disadvantages:
- Fees for deposit, withdraw, trade creation/cancel
- Slow execution
- Not fully decentralized (mediating server)

Settlement Layer

Exchange

Why do we need DEX?

Alice is rich
(aka a "whale")

Alice wants to provide her money to traders to earn fees
..but has to trust someone to manage her money

Bob is nifty trader

Bob wants to buy the latest coins ..but struggles to find a trusted source to buy

DEX System Architecture

DEX trading volume

Automated Market Maker

Liquidity Pool

Idea: Let a smart contract do the market making.

AMM - Automated Market Maker

Idea: Let a smart contract do the market making.

Properties:

- Instant liquidity, irrespective of the trade size
- Purchase of asset X increases price of X and decreases the price of Y
- Ratio of asset X and Y sets the price
- Known as Constant Product (CP) AMM

AMM Example

AMM Example

Expected Slippage

The expected increase or decrease in price based on the trading volume and available liquidity.

Amount x of asset X

Unexpected Slippage \rightarrow Worse Execution Price

Unexpected Slippage \rightarrow Better Execution Price

Slippage Protection

Configures a slippage protection threshold to prevent unacceptable slippage

Slippage Protection

A transaction fails when crossing the slippage limit.

Slippage Protection

A transaction fails when crossing the slippage limit.

Pros and Cons of an AMM

- (+) No Order Book maintenance
- But arbitrage required
- (+) Simple implementation for CP AMM
- Low gas costs
- (-) Danger of impermanent loss/coin de-peg
- Total loss of funds possible
- (-) High slippage for low liquidity markets
- Please do observe your slippage tolerance
- (-) Users vulnerable to sandwich attacks
- See security lecture

Exchange
 Transaction Propagation

Exchange Transaction Propagation

Trader

P2P Network

Exchange Transaction Propagation

Trader
 P2P Network

Exchange Transaction Propagation

Trader
P2P Network
Elected Leader/Miner

Exchange Transaction Propagation

Trader

P2P Network

Exchange Transaction Propagation

- Asynchronous Blockchain P2P Network
- Best effort propagation
- Transparency

Mempool

- High-Frequency Trading

Final Block

Tx fee : 1

- Inclusion based on a fee auction
- Price Gas Auction (PGA)
- On the public P2P network
- Sealed Bid Gas Auction (SGA)
- On centralized network relay services

Pegged and Stablecoin AMM

Pegged/Stablecoin Swap

USD derivatives

Pegged coins

- Three Stablecoin Types
- Reserve-based
- Collateral-based
- Algorithmic

Pegged/Stablecoin Swap

Pegged/Stablecoins

- Pegged/Stablecoin prices move in expectation together
- The exchange rate should ideally remain 1 to 1
- A default CP AMM is not optimized for such case
- Stablecoin AMM pros/cons:
- (+) Better prices for bigger volumes (i.e. more liquidity) \longleftarrow
- (-) Potentially higher gas costs
- (-) Danger of a de-peg of a stablecoin

Pegged/Stablecoin Swap

- Significant liquidity differences among exchanges
- Here an example for a 100M USD swap from DAI to USDC

Price Curve

Stableswap (aka Curve Finance)

Slippage Comparison

Stableswap (aka Curve Finance)

What happens if a coin de-pegs?

What happens if a coin gets blacklisted?

AMM Whitepaper

- Check out the whitepapers of different projects
- These are not peer-reviewed academic works
- Be aware of possible missing items/nuances
- Projects do not always disclose the full details
- Curve:
- https://curve.fi/files/stableswap-paper.pdf
- https://curve.fi/files/crypto-pools-paper.pdf
- Uniswap:
- https://uniswap.org/whitepaper.pdf
- https://uniswap.org/whitepaper-v3.pdf

Arbitrage

BTC/USD
(3) 11

Arbitrage

- Multiple Markets with
- the same assets X and Y
- different prices for X and Y

- Prices are synchronized by "arbitrageurs"
- Profit from the price difference
- Also referred to as "spread"
- Requires to perform at least one transaction

Arbitrage on two markets

Arbitrage (with Flash Loan)

AMM Impermanent Loss

Impermanent Loss Example

2. Price increase of ETH
$1 \mathrm{ETH}=400 \mathrm{DAI}$

$1 \mathrm{ETH}==100 \mathrm{DAI}$
3. Add liquidity

1 ETH, 100 DAI
== 200 USD
$==10 \%$ of pool
3. Withdraw liquidity
$10 \%==0.5 \mathrm{ETH}, 200 \mathrm{DAI}$
$==400$ USD

Impermanent Loss

- Impermanent == not permanent
- Realized upon withdraw only!
- IL can result in total loss
- Trading fees may compensate
- Liquidity mining may compensate
- Similar to a de-peg of a Stablecoin
- Possible Solutions

- Challenging
- Change of the bonding curve

Impermanent Loss Calculator

- • -	. Impermanent Loss Calculator $\mathrm{x}+$				c
$\leftarrow \rightarrow C$	- dailydefi.org/tools/impermar	ent-loss-calculator/	\#	© Incognito (2)	:
dailydefi.org			Twitter	About	
Impermanent Loss Calculator					
This calculator uses Uniswap's constant product formula to determine impermanent loss.					
Fees are not included within results.					
Initial Prices					
Token A - \$ 100					
Token B - \$100					
Future Prices					
Token A - \$1000					
Token B - \$ 100					
Results					
Impermanent loss: 42.50\%					
If $\$ 500$ of Token A and $\$ 500$ of Token B were held					
- Have 5.00 Token A and 5.00 Token B					
- Value if held: \$5,500.00					
If $\$ 500$ of Token A and $\$ 500$ of Token B were provided as liquidity					
- Have 1.58 Token A and 15.81 Token B (in liquidity pool)					
- Value if providing liquidity: \$3,162.28					

AMM Liquidity Mining

Liquidity Mining == Incentive

- 2 Types of rewards in DeFi Pools
- Trading fees (e.g. 0.03\% in Curve)
- Liquidity Mining rewards
- Liquidity Mining
- An incentive to provide liquidity to a pool
- Proportional rewards in terms of liquidity
- Can be added/removed anytime
- Retrospective airdrops possible \rightarrow address history is valuable

Liquidity Mining

Curve

Pool	Base APY	Rewards APY	Volume V
tricrypto CRYPTO V2][?] USDT + wBTC + WETH	3.73\%	+2.04\% \rightarrow 5.11\% CRV	\$28.7m
$\int_{3}^{3 \text { pool USD }} \mathrm{DAI}+\mathrm{USDC}+\mathrm{USDT}$	0.63\%	+3.14\% $\boldsymbol{7}$. $84 \% \mathrm{CRV}$	\$120.3m
(\$) SUSD USD DAI + USDC + USDT + sUSD	0.57\%	$\begin{aligned} & +2.59 \% \rightarrow 6.48 \% \quad \mathrm{CRV} \\ & \mathbf{+ 1 . 7 8 \%} \mathrm{SNX} \end{aligned}$	\$12.5m
B) ren BTC renBTC + wBTC	0.41\%	+5.84\% \rightarrow 14.59\% CRV	\$9.9m
ironbank USD cyDAI + cyUSDC + cyUSDT	4.11\%	+4.68\% $\boldsymbol{+ 1 1 . 7 0 \% ~ C R V ~}$	\$7.7m
(B) bbtc BTC BBTC + sbtcCrv	0.36\%	+2.60\% $\boldsymbol{\rightarrow 6 . 5 1 \% ~ C R V ~}$	\$6.9m
busdv2 USD BUSD + 3Crv	0.89\%	+5.25\% \rightarrow 13.13\% CRV	\$6.7m
(5) lusd USD $\begin{aligned} & \text { LUSD }+3 C r v\end{aligned}$	0.58\%	+4.90\% \rightarrow 12.25\% CRV	\$5.6m
(B) sbtc Brc renBTC + wBTC + sBTC	0.36\%	+4.67\% $\rightarrow 11.67 \% \mathrm{CRV}$	\$5.1m
tbtc BTC tBTC + sbtcCrv	0.81\%	+13.77\% $\boldsymbol{\rightarrow} \mathbf{3 4 . 4 2 \% ~ C R V}$	\$4.6m
See All Pools			

Alpha Homora v2

Farm Pools (18 Pools) ALL	YIELD FARMING © ${ }^{\text {(}}$		Search	
			LIQUIDITY PROVIDING ©	
D \downarrow Yield Farming $\begin{aligned} & \text { Uniswap DPI/ETH }\end{aligned}$	$\begin{aligned} & 33.26 \% \\ & \text { t2.89\% } \end{aligned}$	Yield Farming Trading Fee Alpha APR Borrow APY	$\begin{array}{r} 18.74 \% \\ 7.34 \% \\ 16.32 \% \\ -9.15 \% \end{array}$	FARM
Yield Farming Sushiswap SUSHI/ETH	$\begin{aligned} & 63.58 \% \\ & 27.87 \% \end{aligned}$	Yield Farming Trading Fee Alpha APR Borrow APY	$\begin{array}{r} 38.67 \% \\ 17.74 \% \\ 16.32 \% \\ -9.15 \% \end{array}$	FARM
Yield Farming Sushiswap DPI/ETH	$\begin{aligned} & 35.51 \% \\ & 74.00 \% \end{aligned}$	Yield Farming Trading Fee Alpha APR Borrow APY	$\begin{array}{r} 24.62 \% \\ 3.71 \% \\ 16.32 \% \\ -9.15 \% \end{array}$	FARM
Yield Farming Sushiswap LINK/ETH	$\begin{aligned} & 58.90 \% \\ & 22.62 \% \end{aligned}$	Yield Farming Trading Fee Alpha APR Borrow APY	$\begin{array}{r} 34.06 \% \\ 16.26 \% \\ 19.52 \% \\ -10.94 \% \end{array}$	FARM

DEX Aggregator

- Users may ask
- Where do I get the best price for a trade?
- Where is the deepest liquidity?
- Two types of aggregators

- Off-chain aggregator (1inch, paraswap)
- (+) Can spawn multiple chains, very flexible
- (-) Operator can front-run users
- On-chain aggregator (swapswap)
- (+) atomic routing \& arbitrage
- (-) unlikely to efficiently cover 4+ exchanges

1inch

- Aggregates many DEX
- Very verbose UI for users
- Routing
- Explains which route taken
- No arbitrage performed

SwapSwap

- Aggregates 2 DEX
- Uniswap and Sushiswap
- No UI change for the user
- Routing \& Arbitrage
- Routes a swap if the smart contract deems routing profitable
- Performs arbitrage with flash loans if deemed profitable by the smart contract

How to detect trading opportunities in DeFi?

How to detect arbitrage/profitable opportunities?

- Bellman Ford Algorithm
- Negative cycle detection
- Works among multiple markets
- Used in traditional finance and DeFi
- Theorem Solver (SMT)
- Needs to encode the DeFi model
- Apply heuristics for path pruning

DeFiPoser-ARB and DeFiPoser-SMT [S\&P'21]

- DeFiPoser-ARB
- builds a directed DeFi market graph
- identifies negative cycles
- Bellman Ford-Moore algorithm
- DeFiPoser-SMT
- state transition model
- prunes search space
- theorem prover

DeFiPoser-ARB

DeFiPoser-ARB

Profitable condition
$p_{1} \cdot p_{4}>1$

DeFiPoser-ARB

Profitable condition
$p_{1} \cdot p_{2} . p_{3}>1$

DeFiPoser-ARB

$-\log p_{2}$
$-\log p_{3}$

DeFiPoser-ARB

$$
-\log p_{3}
$$

$$
\begin{aligned}
& \prod_{p}^{p>1}, \\
& \sum_{i}(-\log p p)<0
\end{aligned}
$$

BellmanFord-Moore algorithm
$O\left(\left\|N^{2}\right\| \cdot\|E\|\right)$

DeFiPoser-SMT

Formulate DeFi actions into symbolic models.

Apply heuristics to reduce search space. E.g., a path must not include any loops.

SMT Solver

Objective constraint final profit greater than target value

Optimization

Apply a binary search to find the optimal value.

DeFiPoser Evaluation

- 96 actions on Uniswap, Bancor, MakerDAO, total of 25 assets
- Block 9100000 (Dec-13-2019) to 10050000 (May-12-2020)
- Validation by concrete execution
- Weekly revenue estimate:
- DeFiPoser-ARB: 191.48 ETH (76,592 USD)
- DeFiPoser-SMT: 72.44 ETH (28,976 USD)

Bellman Ford vs. SMT

	DeFiPoser-ARB	DeFiPoser-SMT
Path generation	Bellman-Ford-Moore, Walk to the root; No acyclic paths	Pruning with heuristics; Any paths within the heuristics
Path selection	Combines multiple sub-paths	Selects the highest revenue path
Manual DeFi modeling	No	Required
Captures non-cyclic strategies	No	Yes (e.g., bZx)
Optimally chosen parameters	81.31 ETH (32,524 USD)	Yes (subject to inaccuracy of binary
Maximum Revenue	$22.40 \mathrm{ETH}(8,960$ USD)	
Total Revenue (over 150 days)	$4,103.22 \mathrm{ETH}(1,641,288$ USD)	$1,552.32 \mathrm{ETH}(620,928$ USD)
Lines of code (Python)	300	2,300

